CUMULYVS
Tutorial

ACTS Collection Workshop

Dr. James Arthur Kohl
Computer Science and Mathematics Division
Oak Ridge National Laboratory

August 7, 2003

Research sponsored by the Applied Mathematical Sciences Research Program, Office of Mathematical, Information, and Kohl/2003-1
Computer Sciences, U.S. Department of Energy, under contract No. DE-AC05-000R22725 with UT-Battelle, LLC.

ORNL

@ Scientific Simulation Issues...

Fundamental Parallel Programming

— Synchronization, Coordination & Centrol

Distributed Data Organization
— Locality, Latency Hiding, Data Movement

Long-Running Simulation Experiments
— Monitoring, Fault Recovery

Massive Amounts of Data / Information
— Archival Storage, Visualization

Too Much Computer, Not Enough Science!
— Need Some Help...

Kohl/2003-2

Potential Benefits from
Computer Science Infrastructure:

* On-The-Fly Visualization
= Interactive Access to Intermediate Results
= Attached as Needed, Minimize Overhead
 Computational Steering
= Apply Visual Feedback to Alter Course / Restart
= “Close Loop” on Experimentation Cycle
* Fault Tolerance
= Automatic Fault Recovery / Load Balancing
= Keep Long-Running Simulations Running Long

ORNL Kohl/2003-3

(Collaborative, User Migration, User Library for Visualization and Steering)

* Collaborative Infrastructure for Interacting
with Scientific Simulations:

= Run-Time Visualization by Multiple Viewers
— Dynamic Attachment, Independent Views

— Coordinated Computational Steering
— Model & Algorithm Parameters

— Heterogeneous Checkpointing / Fault Tolerance
— Automatic Fault Recovery and Task Migration

= Coupled Models...

ORNL Kohl/2003-4

Collaborative Combustion Simulation

Methana Flama]

¥Vl Remote Steering

Hultip!le =
\I"-e:wr_ts

. - Allews Remate Experts to¥iew and Infloence

the Simulation

“1Drive sisulatian to interesiang solitiens
STChose ke loopion simulste=revise-simubale cpche

|.H:||| i S I i i 3 ; : “IEnhance conver gence of rumerical akgorithms
E nE oy i % " FAnobd watting compartar resources on uninteresting

ey : . WAL . '."__: 2 it . . or Incarrect ‘Exper menis
~ Physical Resources of e = Al e : ; :
: Multip[t DOE I.ahﬂm'tmfts

Col!abnratwe “If'ewmg and Steermg Enabfe:; "What ﬂ"" Cnmputatmnal SEIEI'I:E

ORNL Kohl/2003-5

CUMULYVS Visualization Features

— Interactive Visualization

* Simple API for Scientific Visualization

* Use Your Favorite Visualization Tool

— Minimize Overhead When No Viewers
* One Message Probe, No Application Penalty

= Send Only Viewed Data

* Partial Array / Lower Resolution

— Rect Mesh & Particle Data .

— Common (HPF) Data Distributions
* BLOCK, CYCLIC, EXPLICIT, COLLAPSE

= Soon Unstructured, Sparse & Adaptive Meshes...

ORNL Kohl/2003-6

Multiple Simultaneous Views

Temperature

ORNL Kohl/2003-7

ORNL

Multiple Distinct Views

Custributed Dot Acray

C - spmd_ £

amll =stwEinit []

oall strfdecompdefine []
aml]l =strEfimldde=fioe=[]

do
call localiarlk il

call =:chang=Cnfoll

aml]l strEf=sendtofe[]
whil=|_not .don=|

Cwnulve attachesidetaches viewers
-~ from parallel sponloton, on-the-flv

T Clobal View 1

o

. P AVF

-

~ Remote collabouators
", view different pats of
*, simulation, mmultaneonsls

Clobal View 2

Tolr Tk

Instmroent existng pacallel

code,

Kohl/2003-8

CUNVIUL YD Arcinitecuurce
coordinate the consistent collection and
dissemination of
information to / from parallel tasks to multiple
lo\c,ailewers

person
using custom

remote person
using virtual reality

GUI | };;;:.I interface

Unix Host A = B /

e

exists in 3 pieces:
application library,
viewer library,
and separate fault
recovery daemon

Unix Host C using AVS

remote person

NT Host B

interact with distributed / parallel application or simulation
supports most target platforms (PvM / MPI, Unix / NT, etc.) Kohl/2003-9

Instrumenting Programs for CUMULVS

« CUMULVS Initialization ~ One Call (Each Task)
= Logical Application Name, # of Tasks

» Data Fields (Visualization & Checkpointing)
— Local Allocation: Name, Type, Size, Offsets
— Data Distribution: Dim, Decomp, PE Topology

« Steering Parameters
= Logical Name, Data Type, Data Pointer

e Periodic CUMULYVS Handler

= Pass Control for Transparent Access / Processing

* Typically 10s of Lines of Code...

ORNL Kohl/2003-10

Local Allocation Organization

dataValues dataDim=2
[
dataO fiset[0]

T Valid —_
— = Dat =
= = 8 8
g S z
e @ =
S Lo =
- = -t
5 © Z
= S

dataSize[1]
ez -
Y
¥
dataAllocSize[1]

ORNL Kohl/2003-11

CUMULYVS Particle Handling

 Particle Data Fundamentally Different

— Data Fields Encapsulated in a Particle Container _

— Explicit Coordinates Per Particle 2

X,Y,Z
int foo;
double bozo[10];

 Particle-Based Decomposition API floa bar:

— User-Defined, Vectored Accessor Routines

* Viewing Particle Data _
— AVS Module Extensions .0
— Tcl/Tk Slicer Particle Mode e

ORNL Kohl/2003-12

CUMULYVS
Steering Features

 Computational Steering
= API for Interactive Application Control
 Modify Parameters While (Long) Running
* Eliminate Wasteful Cycles of Ill1-Posed Simulation

* Drive Simulation to More Interesting Solutions

* Enhance Convergence of Numerical Algorithms

* Allows “What If” Explorations
* Closes Loop of Standard
Simulation Cycle
* Explore Non-Physical Effects...

ORNL Kohl/2003-13

Coordinated Steering

* Multiple, Remote Collaborators
* Simultaneously Steer Different Parameters

= Physical Parameters of Simulation
= Algorithmic Parameters ~ e.g. Convergence Rate

* Cooperate with Collaborators
— Parameter Locking Prevent Conflicts

— Vectored Parameters...

+ Parallel / Distributed Simulations H

— Synchronize with Parallel Tasks
= All Tasks Update Parameter in Unison

ORNL Kohl/2003-14

Parallel Model Coupling in CUMULVS

 Natural Extension to CUMULVS Viewer Scenario

* Translate Disparate Data Decompositions
= Parallel Data Redistribution Among Shared Data Fields

— stv_couple fields(fieldID, appname, fieldname, ...);

= Fundamental Model Coupling Capability

— Next Step ~ Interpolation in Space & Time, Units Conversion...

E.g. Regional Climate Assessment

m é CUMULVS g

Temperature
ORNL Ocean

CUMULYVS Fault Tolerance Features

* Application Fault Tolerance

= Automatic Detection and Recovery from Failures

e User Directed Checkpointing
= User Decides What / Where to Checkpoint
— Minimizes Amount of Stored Data

* Heterogeneous Task Migration

= Restart Tasks on Heterogeneous Hosts
= Restart 1s Automatically Repartitioned 1f Host Pool is of
Different Size or Topology (Yikes!)
* Avoids Synchronizing Distributed Tasks
= Asynchronous Checkpoint Collection and Fault Detection

= Minimize Intrusion of Checkpoint / Restart
ORNL Kohl/2003-16

Run-Time Fault Monitor

e One Checkpointing Daemon
(CPD) Per Host

= Ckpt Collector / Provider

— Run-Time Monitor

= Console for Restart / Migrate

* CPDs Comprise Fault-
Tolerant Application...
— Handle Failure of Host / CPD
= Coordinate Redundancy Replacement 7
) host added on Spare Host
— Ring Topology N

ORNL Kohl/2003-17

Rollback Versus Restart...

» Rollback Recovery:
= Only Replace Failed Tasks, “Roll Back” the Rest
= Elegant & Cool, But You Must...

— Monitor ALL Communication for Restart Notification
— Unroll Program Stack, Reset Comm & File Pointers...

= Necessary for High Overhead Restart Cases

* Restart Recovery:
= “Genocide” ~ Kill Everything & Restart All Tasks
— Simple Approach, No Additional Instrumentation
= Not as Efficient a Recovery in All Cases...

ORNL Kohl/2003-18

Checkpoint Data Collection

« Data from Each Local Task Collected/Committed
— stv_checkpoint () ;
* Invoke When Parallel Data / State “Consistent”. ..
= Highly Non-Trivial in General! (Chandy/Lamport)
— Straightforward for Most Iterative Applications
— Save Checkpoint at Beginning or End of Main Loop
* No Automatic Capturing of Other Internal State:

= Open Files, I/0, Messages-in-Transit. ..

= CUMULVS Assumes User Handles This Recovery

— Can Be Done Manually Using Saved Checkpoint State

— Future Extensions to Assist...
ORNL Kohl/2003-19

Manual Software Instrumentation
 SPDT 98 Case Study ~ SW Instrumentation Cost

Seismic: | Wing Flow:
Original Lines of Code 20,632 2,250

Vis / Steer System Init

Vis / Steer Variable Decls 48 IR
CP Restart Initialization 21 12
CP Rollback Handling 41 34

ORNL Kohl/2003-20

Checkpointing Efficiency
 SPDT 98 Case Study ~ Execution Overhead

Seconds per Iteration

Seismic - No Checkpointing
Seismic - Checkpoint for Restart
Seismic - Checkpoint for Rollback

Wing - No Checkpointing
Wing - Checkpoint for Restart
Wing - Checkpoint for Rollback

(Checkpointing Every 20 Iterations ~ every 15 sec to 4 mins...!)

Seismic Overhead: 4-14% Restart, +1-3% Rollback.
Wing Overhead: 8-15% Restart, +0-2.5% Rollback.

ORNL Kohl/2003-21

An Aside: PVM vs. MPI

* Comparison of Features and Philosophy

* Which One to Choose?
= Both Useful for Given Application Needs...

e CUMULVS Issues

= Internals and General Usage

ORNL Kohl/2003-22

Sge=\’ PVM (Parallel Virtual Machine)

» Use Arbitrary Collection of Networked
Computers as a Single, Large Parallel Computer

= Workstations, PCs (Unix or NT) ~ Clusters
— SMPs, MPPs

e Programming Model & Runtime System

— Message-Passing ~ Point-to-Point, Context,
Some Collective Operations, Message Handlers

= Resource & Process Control, Message Mailbox,
Dynamic Groups, Application Discovery

— Fault Notification

ORNL Kohl/2003-23

Message Passing Interface
Standard

» Library Specification for Message-Passing

= Designed By Broad Committee of Vendors,
Implementors and Users

= High Performance on Massively Parallel Machines
and Workstation Clusters

* Comprehensive Message-Passing System
= Point-to-Point, Collective, One-Sided
= Groups/Communicators, Topology, Profiling, I/0

= Some Process Control (MPI-2 ~ MPI SPAWN)

ORNL Kohl/2003-24

PVM vs. MPI: Difterent Goals

« MPI
— Stable Standard, Portable Code

= High Performance on Homogeneous Systems

 PVM
= Research Tool, Robust, Interoperable

= Good Performance on Heterogeneous Systems

ORNL Kohl/2003-25

PVM vs. MPI: Daifterent Philosophies

« MPI
— Static Model (~ MPI SPAWN in MPI-2...)
= “Rich” API (MPI-1/128, MPI-2 / 288)
= Performance, Performance, Performance...
- PVM
= Dynamic Model
= “Simple” API (PVM 3.4/ 75)
= Flexibility (& Performance)

ORNL Kohl/2003-26

Portability vs. Interoperability

 Portable:

— Re-compile Source Without Modification on a
Different System, with C, C++, Fortran Support

= True of Both MPI and PVM.

* Interoperable:

ORNL

= Executables on Different Systems Communicate
— PVM ~ Yes, MPI ~ Sometimes (Not Required)
= Different MPI Implementations? IMPI ~ Soon...

— Language Interoperability?
— PVM ~ Yes, IMPI ~ Soon...

Kohl/2003-27

Performance vs. Flexibility

* To Be Flexible, You Must Pay the Price...
» Heterogeneity Overheads:

— Data Conversion, Network Protocol Selection,
Extra Message Headers (on top of Native Comm)...

e Choose the Lowest Common Denominator?
= Not the Best on Any System.

* Performance Dictates Locally Optimal Solution.
= Lose Interoperability...

ORNL Kohl/2003-28

Interesting Result

* You can build an MPI implementation that
supports interoperability and system dynamics

across different systems / languages (some
already do ~ Mpich, LAM, IMPI...).

* But, given all these conditions:
= It Would Perform About the Same as PVM!!

ORNL Kohl/2003-29

Supporting MPI Applications in CUMULVS

CUMULVS Works with MPI Applications! ©

But MPI Doesn’t Have Everything We Need (Internally)
= Static Model, Minimal Operating Environment

= No Name Service / Database, Fault Recovery / Notification?
= MPI SPAWN()...? Proxy Server for Viewer Attachment?

« Existing CUMULVS Solution:

= Applications Communicate Using MPI or PVM or ???
= CUMULYVS Viewers / CPDs Still Attach Using PVM

e Possible “Reduced-Functionality” MPI Version...?
= Currently Under Development. ..

ORNL Kohl/2003-30

CCA Future CUMULYVS Plans (1 of 3)

Common Component Architecture

o CCA “MxN” Parallel Data Redistribution
= Builds on CUMULYVS Viz & Coupling Protocols

— CUMULVS & PAWS (LANL) Being Integrated
— “MxN” Generalizes Capabilities of Both Systems

* Point-to-Point versus Persistent Connections (a la Viz)

— CUMULYVS Complements PAWS Coupling Work

ORNL Kohl/2003-31

Future CUMULYVS Plans (2 of 3)
CUMULVS as a Foundry to Forge New Technology

High-Performance Visualization

» Full Parallel Integration of Pipeline
» CCA “MxN” - “MxNxPxQxR”!

——
S
| | Mining &
Data Mgt Analysis

3y s Terabyte+
Proposed “Fully Connected
. . . Data
User-Centric Simulation Cycle Reorg
ORNL For Viz

Reduction & Filtering

Visualization Scalable Visualization Cache Architecture

Parallel
Render

Kohl/2003-32

Future CUMULYVS Plans (3 of 3)
Feature Extensions...

* Application Interface:

— Assist Manual Instrumentation of Applications
— GUI, Pre-Compiler...

e Checkpointing Efficiency:
— Tasks Write Data in Parallel / Parallel File System?
— Redundancy Levels, Improve Scalability...
 Portability:

= Other Messaging Substrates
— Reduced Functionality / Direct Connect for CCA & MPI

ORNL Kohl/2003-33

CUMULYVS Summary

Interact with Scientific Simulations

— Dynamically Attach Multiple Visualization Front-Ends
= Steer Model & Algorithm Parameters On-The-Fly

= Automatic Heterogeneous Fault Recovery & Migration

Future Opportunities
— Couple Disparate Stmulation Models
= Integrate as “MxN” Component in CCA
= Application Instrumentation GUI / Pre-Compiler

http://www.csm.ornl.gov/cs/cumulvs.html
ORNL Kohl/2003-34

Seismic Example ~ 2D (Tcl/Tk)

Seismic Example ~ 3D (AVS)

Air Flow Over Wing Example ~ 3D (AVS)

ORNL Kohl/2003-35

